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ABSTRACT 

Open boundaries are desirable when the region of interest of a computation is a localized area of a much larger 
domain. Boundary conditions are developed for the linear storm-surge equations (without Coriolis effects) that  per- 
mit disturbances to pass out of the region of computation with negligible reflection. These conditions, based on the 
concept of Riemann invariants, are applied in one- and two-space dimensions. Examples of the flow around a sea 
mound, a shelf, and an island are given. Selected comparisons are made with Sommerfeld's radiation condition, 
advanced by Vastano and Reid. 

1. INTRODUCTION 

A very common problem in hydrodynamical compu- 
tations arises when the theoretical model applies to  an 
infinite or semi-infinite region. I t  then becomes necessary 
in the computation to  represent one or more boundaries 
where none exists in the model (or in nature). This false 
boundary must have some sort of conditions applied 
along it, and it is generally the case that these conditions 
contaminate the computation and produce unreal results 
within the region. A common solution to the problem is 
to make the region so large that the boundary errors 
are propagated only through a small portion of it. How- 
ever, aside from being wasteful and inelegant, this tech- 
nique is inapplicable when the Computation is two- or 
three-dimensional and the program approaches the 
capacity of the computer storage. The following is an 
account of the testing of some techniques, including 
two based on dynamical principles rather than computa- 
tional ad hoc devices. 

The equations integrated are those governing hydro- 
static surface waves, often referred to as the "storm-surge 
equations" : 

and 
av as --=-gh(s, y) -+F,. 
at aY (3) 

Here, q is interpreted as the wave height; U, the mass 
transport in the x direction; V, the mass transport in the 
y direction; h, the mean depth of the water; g, the acceler- 
ation due to gravity; and F,, F,, the forces applied to the 
water surface by the atmosphere. 

For the finite-difference analog, the time and space 
differencing used to  represent eq (l), (2), and (3) is 

(4) 

where A is the forward difference operator; 6, the 
centered difference operator; the indices G, k, n) denote a 
point (2, y, t)=(jAx, kAy, nAt) of the discrete grid; and 
Ax= Ay= As. This difference scheme has been extensively 
tested by Sielecki (1968). 

This scheme cannot be used at  the boundaries because 
centered space differences normal to the boundary 
cannot be computed there. Before advancing the met,hods 
to  be used for boundary conditions, it is helpful to ex- 
amine the form of the analytic solution of the wave 
equation in two-space dimensions. 

In  the case of constant depth and zero force F, an 
analytic solution in terms of initial conditions may be 
obtained (Garabedian 1964, pp. 191-210) : 

where C+<i<cztzl c= @h)'/z, Cr, = q(x,y,O) , and G2= qt(x,y,O). 
This represents the solution at  any point and time as an 
area integral over the circular domain of dependence cut 
from the initial data plane by the characteristic cone 

1 Present affiliation: Department 01 Meteorology, University of Utah, Salt Lake City (z- q ) Z +  (y - yay- C 2 ( t  - to)2= 0. 
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or (3) is unstable, and this remains true even when this 
difference is taken only a t  a single boundary point. We 
may easily see this in the one-dimensional case. Let 
qn and Un be the boundary values at, say, j = J .  These 
values would be computed by the one-sided differences 
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FIGURE 1.-Domain of dependence of the wave equation in two- 
space dimensions. 

This is illustrated in figure 1. In  one-space dimension 
eg (?a) simplifies to the familiar d'Alembert solution 

We note first that, in two-space dimensions, after the 
disturbance has reached an arbitrary point in space, 
it  never completely dies out there, regardless of how sharp 
or concentrated the initial disturbance may have been. 
Thus, if the point in question is an open boundary point, 
the disturbance outside that point will affect the interior 
region at  all times; and the interior solution will be highly 
sensitive to the artificial boundary condition applied. In 
one-space dimension d'Alembert's solution shows that the 
same will be true in the general case. If, however, the 
initial tendency G2 is zero, a concentrated initial disturb- 
ance proBagates without change in shape; and an arbi- 
trary point returns to its undisturbed condition once this 
disturbance passes i t  by. 

These remarks illustrate the failure of Huygen's 
principle in two- (or any even number of) space dimen- 
sions, and its limited applicability in one-space dimension 
(see Garabedian 1964, p. 197). 

Direct numerical quadrature of eq (7) would, of course, 
be possible. However, more general numerical procedures 
are desirable that permit variable mean depth h and 
arbitrary force distributions F. 

9. AD HOC NUMERICAL TECHNIQUES 
I t  might be thought at first that the most simple and 

straightforward scheme for the boundaries would be to 
take some sort of one-sided space derivatives a t  boundary 
points. However, a backward space difference in eq (2) 

and 

where E is at  our disposal. The differencing for the bound- 
ary point p, U" is unstable if e>Q, and the coupling with 
the interior points will subject that region to these 
instabilities. If e<O, the differencing is stable, but the 
effect is equivalent to the substitution atax= -a/ax, so 
that disturbances will be propagated back into the interior. 
This situation is analogous to  that described by Platzman 
(1954) in his analysis of instabilities arising out of the 
first-order equation for vorticity advection with open 
boundaries. 

The above conclusions were tested and confirmed by 
several experiments, in all of which the level of the water 
rose without limit. 

YNAMICALLY BASED METH 
We now turn to the formulation of an exact condition 

for open boundaries in one-space dimension. The equations 

a at p ax 
.~ 

c2=gh =const *=-- au 
at ax 

may, upon multiplying the latter by c, be added and 
subtracted to obtain 

and 
a a - at (U-cq)-c - ax (U-c?l)=O. 

The quantities D f c ~  may be called the linearized Rie- 
mann invariants (cf. Garabedian 1964, pp. 509 ff ., where 
the nonlinear case is discussed). Equations (9) state 
that these invariants are respectively conserved along 
the directions dx/dt= &e, that is, along the straight lines, 
called characteristics, zf ct=const in the (z,t) plane. In  
figure 2, characteristics have been drawn intersecting 
open boundaries assumed at x=O, L. I t  is clear that, at 
x= 0, the appropriate boundary condition is the specifica- 
tion of U+cs at all times; similarly, a t  z=L, U-CQ must 
be specsed at  all times. These are dynamic constraints 
representing the influence from outside the region (0,L). 
If, say, I) 'is computed at  each boundary by a one-sided 
difference, U may be determined by the application of 
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FIQURE 2.-Characteristics of the wave equation in one-space 
dimension. 

these constraints. The following experiment will make 
this process clear. 

EXPERIMENT 1 

For the initial condition consisting of a lump of water 
between (0, L) with no initial disturbance outside, the 
conditions are obviously 

'U+cq=O s=o 

u-cq=o x=L. 
and 

Since these conditions are exact, we should expect in the 
solution only the usual errors arising out of truncation. 
That this is the case is verified in figure 3. The computed 
and theoretical disturbance agree within a root mean 
square (rms) error of 1 percent. 

When the model is extended to two-space dimensions, 
it becomes necessary to introduce approximations, there 
being no analog of the Riemann invariants. If, however, 
our finite-difference grid has a scale that is small compared 
to the radius of curvature of the wave fronts, we may treat 
the wave front reaching a given boundary point as locally 
a plane wave arriving from a direction specified by the 
transport components at  that point. Stated otherwise, we 
specify for all times one of the quantities J u 2 + T r 2 k c q  a t  
the boundaries, the sign ambiguity being resolved ac- 
cordingly as the point is an i d o w  (+) or outflow (-) 
point. Since this is an approximation introducing other 
errors than the well-understood truncation errors, we have 
tested the scheme under a variety of conditions. This 
method has been used by Trulio and Walitt (1970) for 
nonlinear compressible flow. However, they maintain 
q= 0 at open boundaries, which is an inadequate condition 
for the linear case. 

EXPERIMENT P 

The two-dimensional lump of water with zero initial 
disturbance outside requires the condition 

0 

5 At 

lOAt  

2 0 A t  

3 0 a t  

4 0 a t  

5 0 a t  

FIGURE 3.-Experiment 1, time evolution in one dimension of the 
free surface from the initial conditions $=cos (rjjl30) for lj-251 
5 15 and q=O otherwise. 

on a,ll boundaries. This was used to determine the dis- 
placement 7, the transports being computed from back- 
ward space differences. To  maintain radial symmetry 
and allow specification of a flat initial field outside, the 
initial values of q were set equal to zero outside a radius of 
13 grid points. The results appear quite reasonable and 
show no instability and very weak reflection (fig. 4). 

An analytic solution for this case was not evaluated, but 
the following check was carried out. As mentioned earlier, 
the numerical scheme in the interior has been found to 
be highly accurate. No artificial boundaries would be 
needed if it were economical to extend the limits of inte- 
gration of the interior eq (4-6) far enough so that re- 
flection from artificial boundaries could not reach the 
interior during the period of interest. In  the check, the 
grid size was increased from (25x25) to (49X49), and 
the same disturbance as before was put in the (25x25) 
central region of the larger grid. The rest of it was filled 
with zeros, to effect the same flat external conditions 
simulated by condition (10) above. No reflection from the 
new boundaries could arrive at  the interior (25x25) region 
before 30 time steps. 

The comparison of the two computations through this 
time step is surprisingly close, even at  the boundaries. 
The only discrepancy is that the water level in the middle 
of the smaller grid becomes slightly positive again past 
time step 7. In the larger grid check case, the water level 
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Ird I T I  A L I N  IT I A L 

CHARCCTERISTIC METHOD 

4-- -4- 

2lAt  

_-  

/, FIGURE 6,-Experiment 3, geometric configuration showing the 
four open boundaries and the sea mound of the form h= H-0.95 
X H cos ( ~ d ( k -  13)2+ (j- 13)2/10) for d(k- 13)2+ (j- 13)2<5 
and h= H otherwise. 

. /5-- 
3OAt 

EXPERIMENT 3 RADIATION CONDITION 

FIGURE 4.-Experiment 2 time evolution in two dimensions of the 
free surface elevation from the initial conditions q= 150/[15+ 
(j-13)2+(k-13)~]-150~159 for d(k-13)z+fCi-13)2<12 and 
q = O  otherwise. The fields on the left were computed by the 
characteristic method as described. Those on the right, for 
comparison, were computed from the radiation condition method, 
an  account of which is given in connection with experiment 3. 

INITlfiL I N I T I A L  

CHARACTERISTIC METHOD RADIATION CONDITION 

FIGURE 5.-Experiment 2, same as figure 4 with the initial distur- 
bance elongated and skewed. 

A problem of oceanographic interest requiring open 
boundaries is that of a specified flow or wave form entering 
a region from outside as a function of time. This experi- 
ment was one in which a sea mound was placed in the 
middle of the grid to disturb such an impinging flow 
(fig. 6). The constant depth of the water outside a circle 
of radius 5 grid points from the center is 100 m. This 
means that approximately 85 percent of the area of 
integration was of constant depth. A plane wave was 
imposed at  the left boundary, propagating into a region 
initially undisturbed. The method for handling the bound- 
aries here is not  quite as straightforward as in the pre- 
vious case, and the left boundary is not really open to 
outgoing waves. An attempt to solve the problem using 
condition (10) on the total transport at  the upper and 
lower boundaries proved to be numerically unstable. A 
linear stability analysis showed that this was because 
the forcing was parallel to the boundaries. The approach 
suggested by this analysis was to split the disturbance 
into two parts along these boundaries when applying 
(10). At the right and left boundaries, this refinement 
was not needed. The method finally used is outlined 
below. 

At j = O  (left boundary) : 

U(O,y,t) =300 sin(m/l2). 

Predict V from 

remains slightly negative at  this time. This small difference 
is evidently due to boundary reflection; but in this case, 
it seemed negligible. 

Obtain 7 from 

The fall ofthe water below equilibrium level is physically 
real, and it is an instance of the above-mentioned failure 
of Huygen’s principle in two-space dimensions. 

A similar but somewhat more exacting test is achieved 
by elongating the initial disturbance and skewing it with 

At  k=o, K (lower and upper boundaries) : 
predict ufrom 

and vfrom 
&UY, o=aS&, L 

respect to the axes. The results were equally successful 
(fig. 5) .  
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27At FIQURE %-Experiment 4, time evolution of the transports. The 
perimeter of the base of the mound is shown by the dashed line. 

Obtain q from 

q= *&P+v2/c. 

-8 -4 0 4 8 8 4 On each of the above boundary points where q is deter- 
mined as a square root with a -k-  sign, the sign is deter- 
mined by the direction of the transport. The plus sign 
was taken for outward transport and the minus sign for 
inward transport to maintain consistency with the 
assumption of no inflow other than that specifled on the 
left boundary. In  the interior, eq (4-6) were used. 

The evolution of the free surface is shown in figure 7. 
The results appear quite meaningful. I t  is interesting that 
the steep slope of the bottom near the center of the grid 
apparently causes no computational instability or com- 
putational modes. As the crests and troughs of the plane 
wave approach the mound, they are apparently quite 
strongly retarded. The solution becomes periodic with the 
period of the incident wave. 

31 At 

-8 -4 0 4 8 4 0 -4 -8 

40At 

EXPERIMENT 4 

A similar problem of flow over a sea mound that tends 
-4 

FIGURE 7.-Experiment 3, time evolution of the free surface eleva- 
tion. The perimeter of the base of the mound is shown by the 
dashed line. 

to  a steady state is given by the boundary inflow 
- 4 0 4 8  8 4 0 - 4  

U(0, y, t )  =30 sin(m/36) 
= 30 

n< 18 
n2 18. 

Then define 

U’ = u+- U(O,y, -z /c+t) ,  

and obtain 7 from 

and similarly for k =K.  
At j =  J (right boundary) : 

Predict U from 

All other parameters were as in experiment 3. Here, the 
approaching water is retarded up to about time step 30, 
after which the surface levels off and comes to  a new 
equilibrium q = 3 0 / m .  

Of special interest here are the transport fields (fig. 8). 
The U-component isolines wrap around the mound as 
might be expected, with a quasi-steady state being 
reached by 63 time steps. The V isolines also appear to  be 
qualitatively reasonable, and by the time steady state is 
reached, they have maximum magnitude about one-fifth 
of the maximum U components. 

This method of splitting up the waves is physically 
reasonable. It amounts to  separating the wave perturba- 
tion into (1) the plane progressive wave components 
incident upon the region and (2) a reflected part. A similar 
technique was formalized by Vastano and Reid (1967) 
to  study scattering of plane monochromatic waves by a 
circular island in water with sloping sides. In  that work, 



542 MONTHLY WEATHER REVIEW V O l .  99, No. 6 

t 

' 9 0  t 

t 
770 

3 0 a t  

50 At 

80 At 

398nt 

3 POINT 
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398 At 

FIGURE 9.-Experiment 5, time evolution in one dimension of the 
free surface. 

the reflected waves were handled by applying Sommer- 
feld's (1949) far-field radiation condition at  the open 
boundaries. The sloping bottom and the island were 
axially symmetric and centered in a radial grid of other- 
wise constant-depth water. The constant-depth portion 
of the grid constituted 77 percent of the area of the inte- 
gration, and the far-field radiation condition was applied 
at  the perimeter of integration. Agreement with analytic 
solutions was good. 

The radiation condition in two-space dimensions, as 
applied by Vastano and Reid, amounts to specifying an 
r-'I2 asymptotic dependence for the scattered waves. 
Unlike the method of characteristics, it applies to a 
diverging flow; but it is an asymptotic condition and thus 
presumably requires a large grid. No systematic com- 
parison has been made of these techniques; and, on balance, 
the choice in any particular computation probably will 
depend on the expected curvature of the wave fronts at the 
boundary relative to  the grid resolution. Figures 4, 5,  and 
12 depict selected comparisons. 

EXPERIMENT 5 

Sommerfeld's condition cannot be used in one dimension, 
where reflected waves do not diminish as they travel from 

I ............................ [ =* h2 

---- - 
/ 

0 a 5 9 3  
SHELF OPEN OPEN 

BOUNDARY BOUNDARY 
X h  

FIGURE IO.-Experiment 6, cross section showing the one-dimensional 
shelf and the open boundaries. 

the source of reflection. TQ study the effectiveness of the 
characteristic method for one-dimensional physical re- 
flection, the y variation of the sloping bottom was removed 
from experiment 3. Thus, the incident wave would not be 
dispersed in two dimensions; and the solution should not 
develop any y dependence. The mound thus became a 
ridge parallel to the y axis, with a crest reaching to within 
5 percent of the water surface. 

The results of this experiment for the same incident 
wave as that of experiment 4 are shown in figure 9. It can 
be seen that the water piles up to  the left of the ridge but 
later reaches an equilibrium level. I n  addition, large- 
amplitude waves of length 2As begin to  develop as the 
computation continues. It was not clear whether these 
computational modes resulted mainly from the sharpness 
of the sloping bottom or from the large ratio of the depth 
in the deepest part of the water to that in the shallowest 
portion. 

This experiment demonstrates an important principle 
concerning the open boundary problem. The dispersion 
in a truly two-dimensional disturbance reduces the d B -  
culty of treating boundaries effectively in the case of a 
specified inflow. In  the physical situation, feedback from 
reflection is always present. To ignore it numerically at  
the inflow boundary is valid only to  the extent that it is 
small; and in the one-dimensional case, there is no mech- 
anism that reduces it asymptotically. Thus re-reflection 
at the i d o w  boundary in the one-dimensional case does 
appear to produce computational modes that were neg- 
ligible in the two-dimensional computation. 

EXPERlMENU 6 

A one-dimensional problem with an analytic solution 
is provided by the discontinous bottom profile of figure 
10. A monochromatic wave is specified to be incident 
upon the open boundary at  z=O, and the shelf begins 
at  z=a. Thus, the bottom slope was sharper than at  any 
point in experiments 3-5, while the total change of depth 
was only about one-tenth as large. 
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CHARACTERISTIC METHOD 
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FIGURE 11.-Experiment 6, time evolution in one dimension of the 

free surface. The incoming wave crests are numbered as they enter 
the left boundary. 

An analytic solution for this case can be expanded in 
the form 

?-sin u(t-z/cl)-x sin u(t-z/cl-2u/cl) 
+ A 2  sin w(t-z/cl-4~,/cl)- . . ., 
+ A  sin w ( t + z / ~ ~ - 2 u / c ~ ) - ~ ~  sin w(t+z/cl-4u/cl)+. . . 

where (J is the wave frequency and where only those 
terms are evaluated in which the arguments are positive, 
for the area to the left of the jump and 

q-(l+X){sin u[t-(z-a)/c2-u/c1] 
- A  sin w[t- (s--a)/c2-3u/cl] 
+A2 sin o[t(z-a)/c2-5u/cl]- . . . 

for the region to the right of the jump where 

These equations satisfy the conditions for given 71 a t  
x=O and the continuity of 71 and of U at x=a up to terms of 
order X2. In  the case of h2=X hl, X is approximately y6. 
This means that the reflection coefficient, which is approx- 
imately equal to  A ,  is also about y6. The solution depends 
upon the relationship of a to  the wavelength of the incident 
waves as well as upon the ratio of the depths. However, 
the amplitude is bounded so that, for a depth ratio of )i, 
the amplitude on either side of the depth increment should 
not greatly exceed the amplitude of the incident waves. 
The amplitude over the shelf is always greater than the 
amplitude on the deeper water. Also, the waves should 
move more slowly in the shallower water, so the wave- 
length should be decreased there. 

The results of this experiment are shown in figure 11. 
Here, 150 grid points were used in the direction of propa- 

RADIATION CONDITION 

FIGURE 12.-Experiment 7, contours of free surface elevation a t  
time step 98. 

gation, 90 located to the left of the depth increment and 60 
to  the right. The wavelength of the incident waves was 30 
grid intervals. The solution shows that the waves come 
in smoothly a t  first, reaching the depth increment after 
about 90 time steps. The wave crests are numbered. 

At 210 time steps, the solution was still quite smooth; 
and the second crest had almost reached the right open 
boundary. I n  the computations, this right boundary con- 
dition was specified by setting U-c2q=0, the left by set- 
ting U-c,q=O. Thus, the left boundary was effectively 
closed for the reflected outgoing waves. The effect of this 
is shown at  time step 300 when the reflected waves have 
had time to return to that boundary. The computational 
mode of separated solutions at  alternate grid points has 
reappeared, although not in as marked a fashion as in the 
previous experiment. However, it does not obscure the 
main features of the result; and a three-point smoothing 
produces a good result as shown. 

EXPERIMENT 7 

The scattering pattern of an island provides a more 
stringent test for our boundary conditions than that of a 
sea mound. In  this experiment, the disturbance is caused 
by surface stress from a uniform wind field above the water. 
Identical experiments were run using both characteristic 
and radiation boundary conditions; the results are pre- 
sented in figure 12. 

As might be expected, the water piles up on the wind- 
ward coast of the island. For a 40-km island and a depth 
of 100 m, for example, time step 98 corresponds to  1.1 hr. 
At this time, a 20 m/s wind has produced a rise in the water 
level of about 1.5 m. The sharp corners of the island seem 
to produce computational modes that the radiation bound- 
ary conditiQn handles more effectively than the character- 

423-910 0-71-7 



544 MONTHLY WEATHER REVIEW Vol. 99, No. 6 

istic boundary condition. At the time step shown, a signal ACKNOWLEDGMENTS 
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4. CONCLUSIONS 
The limitations of the methods discussed above should 

be emphasized. Both the characteristic method and the 
radiation condition method require the assumption of a 
region of constant depth near the boundary. (Edge waves 
are an important case thus excluded.) The former method 
is designed for situations in which the disturbance ap- 
proaching the boundary can be considered locally at every 
boundary point as a plane wave. The latter applies when 
a radially symmetric wave is the better approximation. 
When the disturbance is composed of two plane-waves, 
the problem is tractable according to either method dis- 
cussed in experiments 3 and 4 when one of the waves is 
known. When the noninteracting waves are both unknown, 
there is no available method for resolving them. 

Vorticities introduced into the transport field by the 
stress field or by Coriolis effects are also beyond the scope 
of the methods. However, a considerable variety of 
problems, as indicated by the experiments, can be handled 
by either method, and important one-space-dimensional 
cases by the characteristic method. Practical applications 
of these open-boundary techniques in some operational 
storm-surge forecast programs may be possible. 

the University of California, Los Angeles. 

with Prof. A. Arakawa and Dr. L. Greenstone. 
In  the technical development, we have profited by discussions 
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